Structure detection and segmentation of documents using 2D stochastic context-free grammars
نویسندگان
چکیده
In this paper we define a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents. Two sets of text classification features are used to perform an initial classification of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models and the results showed that the proposed grammatical model outperformed the other methods. Furthermore, grammars also provide the document structure along with its segmentation.
منابع مشابه
Multimedia and Data Management
Despite the recent advances in handwriting recognition, handwritten twodimensional (2D) languages are still a challenge. Electrical schemas, chemical equations and mathematical expressions are examples of such 2D languages. In this case, the recognition problem is particularly difficult due to the two dimensional layout of the language. The main goal of our work is to study the application of t...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملRecognition of on-line handwritten mathematical expressions using 2D stochastic context-free grammars and hidden Markov models
This paper describes a formal model for the recognition of on-line handwritten mathematical expressions using 2D stochastic context-free grammars and hidden Markov models. Hidden Markov models are used to recognize mathematical symbols, and a stochastic context-free grammar is used to model the relation between these symbols. This formal model makes possible to use classic algorithms for parsin...
متن کاملStudying impressive parameters on the performance of Persian probabilistic context free grammar parser
In linguistics, a tree bank is a parsed text corpus that annotates syntactic or semantic sentence structure. The exploitation of tree bank data has been important ever since the first large-scale tree bank, The Penn Treebank, was published. However, although originating in computational linguistics, the value of tree bank is becoming more widely appreciated in linguistics research as a whole. F...
متن کاملIntroduction to stochastic context free grammars.
Stochastic context free grammars are a formalism which plays a prominent role in RNA secondary structure analysis. This chapter provides the theoretical background on stochastic context free grammars. We recall the general definitions and study the basic properties, virtues, and shortcomings of stochastic context free grammars. We then introduce two ways in which they are used in RNA secondary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 150 شماره
صفحات -
تاریخ انتشار 2015